Previous Next

CURRENT ISSUE

№3' 2021

OBSTETRICS AND GYNECOLOGY

International Medical Journal, Vol. 27., Iss. 3, 2021, P. 37−43.


DOI (https://doi.org/10.37436/2308-5274-2021-3-8)

ELECTROENCEPHALOGRAPHY FEATURES IN REGULATION OF AUTONOMIC NERVOUS SYSTEM IN WOMEN WITH INFERTILITY


Letsin D. V.

Zaporizhzhia State Medical University, Ukraine

The method of electroencephalography is used for scientific and clinical purposes. It applies the modern mathematical methods of data processing and analysis, allows qualitative and quantitative analysis of the functional state of brain and its responses under the action of stimuli and when performing various activities. Owing to the analysis of published papers over the past five years on the features of electroencephalography as a method of assessing the regulation of the autonomic system of women depending on their age and the presence of extragenital diseases, the diagnostic value of this method in treatment of infertility patients in program of in vitro fertilization was grounded. Methods of system and content analysis were used in the research. In clinical practice, the use of electroencephalography allows to determine the functional activity of human brain and to identify the risk group of patients with dysfunction of the autonomic nervous system, up to the appearance of pathological conditions, as well as in reproductive sphere of women with infertility. The study is of important diagnostic and prognostic value in the examination of almost healthy people and women with various pathologies: dysfunction of the autonomic nervous system, mental and neurological diseases, especially with epilepsy. In modern science, various methods of computer analysis of electroencephalograms are used, mostly spectral, that allows to mathematically determine and study their frequency characteristics. Evaluation of the results of electroencephalography in patients of reproductive age makes it possible to determine the bioelectrical activity of brain, disorders of autonomic regulation, to identify the risk groups, as well as increase the effectiveness of assisted reproductive technologies based on appropriate changes in electroencephalogram.

Key words: women with infertility, electroencephalography, autonomic nervous system, reproductive health.


REFERENCES


1. Doletskii A. N., Guzenko D. S. Interfeis "mozg−komp'yuter": sovremennyi etap razvitiya i perspektivy. 2017. № 2. S. 15−20. URL: https://cyberleninka.ru/article/n/interfeys−mozg−kompyuter−sovremennyy−etap−razvitiya−i−perspektivy/viewer.

2. Levitskaya O. S. Interfeis mozg−komp'yuter: budushchee v nastoyashchem // Vestn. RGMU. 2016. T. 2. S. 4−16.

3. Mokienko O. A. Interfeis mozg−komp'yuter: pervyi opyt klinicheskogo primeneniya v Rossii // Fiziologiya cheloveka. 2016. № 1. S. 31−39. doi: https://doi.org/10.7868/s0131164616010136

4. Stankevich L. A. Klassifikatsiya elektroentsefalograficheskikh patternov voobrazhaemykh dvizhenii pal'tsami ruki dlya razrabotki interfeisa mozg−komp'yuter // Trudy SPIIRAN. 2015. № 40. S. 163−182.

5. Vdovichenko S. Yu. Rodinno−orієntovanі tekhnologії u zhіnok іz bezplіddyam v anamnezі // Reproduktivnoe zdorov'e zhenshchiny. 2020. № 3. S. 21−23.

6. Gulyaev S. A. Elektroentsefalograficheskoe issledovanie v klinike: problema sovremennoi klassifikatsii // Russkii zhurn. detskoi nevrologii. 2014. № 1. S. 35−41.

7. Busygin A. E. Problematika primeneniya interfeisa "mozg−komp'yuter" // Materialy XXII s"ezda fiziologicheskogo obshchestva imeni I. P. Pavlova. M., 2013. S. 85.

8. Zastosuvannya ukraїns'koї Ґrіd−іnfrastrukturi dlya analіzu elektroentsefalogram ta ul'trazvukovikh dіagnostichnikh zobrazhen' / R. V. Bival'kevich, V. O. Gaidar, S. P. Radchenko, O. O. Sudakov // Medichna іnformatika ta іnzhenerіya. 2015. № 4. S. 76−77.

9. Shishkin S. L. Na puti k vysokoskorostnym interfeisam glaz−mozg−komp'yuter: sochetanie "odnostimul'noi" paradigmy i perevoda vzglyada // Vestn. Moskovskogo universiteta. 2013. № 4. S. 4−19.

10. Mokienko O. A. Osnovannyi na voobrazhenii dvizheniya interfeis mozg−komp'yuter v reabilitatsii patsientov s gemiparezom // Byulleten' sibirskoi meditsiny. 2013. № 2. S. 30−35.

11. Kotov S. V. Primenenie kompleksa "interfeis "mozg−komp'yuter" i ekzoskelet" i tekhniki voobrazheniya dvizheniya dlya reabilitatsii posle insul'ta // Al'manakh klinicheskoi meditsiny. 2015. № 39. S. 15−21.

12. Sotnikov P. I. Vybor optimal'nykh chastotnykh diapazonov signala elektroentsefalogrammy v interfeise "mozg−komp'yuter" // Nauka i obrazovanie. 2015. № 6. S. 217−234.

13. Sotnikov P. I. Vydelenie kharakternykh priznakov signala elektroentsefalogrammy s pomoshch'yu analiza entropii // Nauka i obrazovanie. 2014. № 11. S. 555−570.

14. Kmet' T. І. Chutlivіst' nervovikh ta glіal'nikh klіtin tіm'yanoї chastki kori velikikh pіvkul' do nepovnoї global'noї іshemії−reperfuzії golovnogo mozku // Klіnіchna ta eksperimental'na patologіya. 2014. № 1. S. 54−57.

15. Kaplan A. Ya. Eksperimental'no−teoreticheskie osnovaniya i prakticheskie realizatsii tekhnologii "Interfeis "mozg−komp'yuter"" // Byulleten' sibirskoi meditsiny. 2013. № 2. S. 21−29.

16. Vozdeistvie belogo sveta s var'iruemoi tsvetovoi temperaturoi na elektroentsefalogrammu cheloveka / E. A. Korsakova i dr. // Vestn. novykh meditsinskikh tekhnologii. 2012. № 4. S. 30−33.

17. Chastotnye i prostranstvennye kharakteristiki elektroentsefalogrammy bol'nykh paranoidnoi shizofreniei v zavisimosti ot vyrazhennosti produktivnoi i negativnoi simptomatiki / V. K. Bochkarev i dr. // Zhurn. nevrologii i psikhiatrii imeni S. S. Korsakova. 2015. № 1. S. 66−74.

18. Khaoticheskaya dinamika parametrov elektroentsefalogramm / Yu. V. Vokhmina, V. V. Es'kov, D. V. Gorbunov, G. A. Shadrin // Vestn. novykh meditsinskikh tekhnologii. 2015. № 2. S. 38−43.

19. Nurse E. S. A Generalizable Brain−Computer Interface (BCI) Using Machine Learning for Feature Discovery // PLoS One. 2015. Vol. 10, № 6. P. 1−22. doi: https://doi.org/10.1371/journal.pone.0131328

20. Choi I. A systematic review of hybrid brain−computer interfaces: Taxonomy and usability perspectives // PLoS One. 2017. Vol. 12, № 4. P. e0176674. doi: https://doi.org/10.1371/journal.pone.0176674

21. Vasilyev A. Assessing motor imagery in brain−computer interface training: Psychological and neurophysiological correlates // Neuropsychologia. 2017. Vol. 97. P. 56−65. doi: https://doi.org/10.1016/j.neuropsychologia.2017.02.005

22. Das R. Cognitive Load measurement − a comparative study using Low cost Commercial EEG devices // 3rd Internaltional Conf. Adv. Comp. Vol. Commun. Informatics. 2014. P. 1188−1194.

23. Bamdad M., Zarshenas H., Auais M. A. Application of BCI systems in neurorehabilitation: a scoping review // Disabil. Rehabil. Assist. Technol. 2015. Vol. 10, № 5. P. 355−364. doi: https://doi.org/10.3109/17483107.2014.961569

24. Saha S. Enhanced inter−subject brain computer interface with associative sensorimotor oscillations // Healthc. Technol. Lett. 2017. Vol. 4, № 1. P. 39−43. doi: https://doi.org/10.1049/htl.2016.0073

25. Jeunet C., Jahanpour E., Lotte F. Why standard brain−computer interface (BCI) training protocols should be changed: an experimental study // J. Neural. Eng. 2016. Vol. 13, № 3. P. 36024. doi: https://doi.org/10.1088/1741−2560/13/3/036024

26. Zhang D. Toward a minimally invasive brain−computer interface using a single subdural channel: A visual speller study // Neuroimage. 2013. Vol. 71. P. 30−41. doi: https://doi.org/10.1016/j.neuroimage.2012.12.069

27. Bakun O. V. Vpliv genіtal'nogo endometrіozu ta suputnіkh zakhvoryuvan' na bezplіddya za danimi retrospektivnogo analіzu іstorіi khvorobi // Bukovins'kii medichnii vіsn. 2019. № 40. S. 9−15.

28. Berestovii O. O. Mediko−sotsіal'nі osoblivostі podruzhnіkh par z bezplіddyam // Sіmeina meditsina. 2019. № 5/6. S. 149−152.

29. Homer M. L. Sensors and Decoding for Intracortical Brain Computer Interfaces // Annu. Rev. Biomed. Eng. 2013. Vol. 15, № 1. P. 383−405. doi: https://doi.org/10.1146/annurev−bioeng−071910−124640

30. Gandhi V. Quantum neural network−based EEG filtering for a brain−computer interface. IEEE Trans // Neural Networks Learn. Syst. 2014. Vol. 25, № 2. P. 278−288. doi: https://doi.org/10.1109/tnnls.2013.2274436

31. Pires G., Nunes U., Castelo−Branco M. Statistical spatial filtering for a P300 − based BCI: tests in able−bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis // J. Neurosci. Methods. 2011. Vol. 195, № 2. P. 270−281. doi: https://doi.org/10.1016/j.jneumeth.2010.11.016

32. Murguialday A. R. Afferent effect on brain computer interfaces : an experimental analysis: dissertation. San Sebastian. 2011. P. 102.

33. Lotte F., Larrue F., Mühl C. Flaws in current human training protocols for spontaneous Brain−Computer Interfaces: lessons learned from instructional design // Front. Hum. Neurosci. 2013. Vol. 7, № 568. P. 1−11. doi: https://doi.org/10.3389/fnhum.2013.00568

Go on Top