Previous Next


№1' 2022


International Medical Journal, Vol. 28., Iss. 1, 2022, P. 11−16.



Pankova O. A.

Kharkiv Medical Academy of Postgraduate Education, Ukraine

Cardiovascular diseases are the most common non−communicable diseases, the leading risk factors for which are the presence of hypertension and type 2 diabetes in a patient. The versatile nature of etiopathogenesis complicates the process of their early diagnosis and determines the search for new diagnostic possibilities. The role of relaxin−2 being a reproductive hormone, which can be considered as a biomarker of cardiometabolic diseases, has been determined. It is a pleiotropic hormone with vasodilating, antifibrotic, antihypertrophic, antioxidant, antiapoptic, angiogenic, metabolic and anti−inflammatory effects, that also allows it to be considered as a potential pharmacological molecule when treating the cardiovascular disease. Relaxin−2 is involved in regulation of glucose metabolism, based on the similarity of its structures to insulin. This hormone improves muscle perfusion, increases muscle glucose uptake, and helps to reduce muscle insulin resistance. The results of studies confirm a special role in the metabolism modulatiom. It increases the levels of polyunsaturated fatty acids, carboxylic acid malate and amino acids aspartic acid, D (−) − 2−aminobutyric acid, asparagine, glutamine, and enhances the activation of AMPK in the liver, which has hepatoprotective properties and regulates energy. At base of the antioxidant activity of relaxin−2 there is its ability to reduce oxidative stress by inhibiting the secretion of reactive oxygen species, mitochondrial superoxide and, consequently, reducing the oxidative oxidation of cell membrane lipids. Relaxin−2 may play a special role in the early diagnosis of cardiometabolic diseases, as it, due to its vasoactive and cardioprotective influences, affects the regulation of metabolism, which allows it to be considered as a biomarker.

Key words: cardiovascular diseases, hypertension, type 2 Diabetes mellitus, relaxin−2, insulin resistance, metabolism, antioxidant action.


1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000−2019. World Health Organization. Geneva, Switzerland. 2020. URL:−and−global−health−estimates/ghe−leading−causes−of−death.

2. Hisaw F. L. The Corpus Luteum Hormone. I. Experimental relaxation of the pelvic ligament of the guinea pig. Physiological Zoology. 1929. Vol. 2, № 1. P. 59−79. doi:

3. Relaxin family peptides and their receptors / R. A. D. Bathgate et al. Physiol. Rev. 2013. Vol. 93, № 1. P. 405−480. doi:

4. Relaxin−2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives / S. Feijóo−Bandín et al. Front. Physiol. 2017. Vol. 8, № 599. doi:

5. Hisaw F. L. Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 1926. Vol. 23. P. 661−663. doi:−23−3107

6. Relaxin and Extracellular Matrix Remodeling: Mechanisms and Signaling Pathways / Ng H. H. et al. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 59−65. doi:

7. Intravenous Recombinant Human Relaxin in Compensated Heart Failure: A Safety, Tolerability, and Pharmacodynamic Trial / T. Dschietzig et al. J. of Cardiac Failure. 2009. Vol. 15, Iss. 3. P. 182−190. doi:

8. Relaxin for the treatment of patients with acute heart failure (Pre−RELAX−AHF): a multicentre, randomised, placebo−controlled, parallel−group, dose−finding phase IIb study / J. R. Teerlink et al. Lancet. 2009. Vol. 373, Iss. 9673. P. 1429−1439. doi:−6736(09)60622−X

9. Multicenter, randomized, double−blinded, placebo−controlled phase II Study of Serelaxin in Japanese Patients with Acute Heart Failure / N. Sato et al. Circ. J. 2015. Vol. 79, Iss. 6. P. 1237−1247. doi:−15−0227

10. Serelaxin, recombinant human relaxin−2, for treatment of acute heart failure (RELAX−AHF): a randomised, placebo−controlled trial / J. R. Teerlink et al. Lancet. 2013. Vol. 381, Iss. 9860. P. 29−39. doi:−6736(12)61855−8

11. Effects of Serelaxin in Patients with Acute Heart Failure / M. Metra et al. N. Engl. J. Med. 2019. Vol. 381. P. 716−726. doi:

12. Dschietzig T. B. Relaxin−2 for heart failure with preserved ejection fraction (HFpEF): Rationale for future clinical trials. Mol. Cell. Endocrinol. 2019. Vol. 487. P. 54−58. doi:

13. Relaxin confers cytotrophoblast protection from hypoxia−reoxygenation injury through the phosphatidylinositol 3−kinase−Akt/protein kinase B cell survival pathway / O. Ogunleye et al. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017. Vol. 312, № 4. P. R559−R568. doi:

14. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking / D. T. Li et al. Yale J. Biol. Med. 2019. Vol. 92, Iss. 3. P. 453−470.

15. Relaxin Treatment Reverses Insulin Resistance in Mice Fed a High−Fat Diet / J. S. Bonner et al. Diabetes. 2013. Vol. 62, Iss. 9. P. 3251−3260. doi:−0033

16. Relaxin activates AMPK−AKT signaling and increases glucose uptake by cultured cardiomyocytes / A. Aragon−Herrera et al. Endocrine. 2018. Vol. 60, Iss. 1. P. 103−111. doi:−018−1534−3

17. Abnormal relaxin secretion during pregnancy in women with type 1 diabetes / P. G. Whittaker et al. Exp. Biol. and Med. 2003. Vol. 228, Iss. 1. P. 33−40. doi:

18. Plasma levels of relaxin−2 are higher and correlated to C−peptide levels in early gestational diabetes mellitus / Y. A. Lopez et al. Endocrine. 2017. Vol. 57. P. 545−547. doi:−017−1354−x

19. Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus / T. Schondorf et al. Gynecol. Endocrinol. 2007. Vol. 23, Iss. 6. P. 356−360. doi:

20. Assessment of relaxin levels in pregnant women with gestational diabetes mellitus / I. Zaman et al. Endocrine Abstracts. 16th European Congress of Endocrinology; (Poland, Wroclaw 2014). Wroclaw 2014. Vol. 35. P. 377. doi:

21. The plasma levels of relaxin−2 and relaxin−3 in patients with diabetes / X. Zhang et al. Clin. Biochem. 2013. Vol. 46, Iss. 16−17. P. 1713−1716. doi:

22. Szepietowska B., Gorska M., Szelachowska M. Plasma relaxin concentration is related to beta−cell function and insulin sensitivity in women with type 2 diabetes mellitus. Diabetes research and clinical practice. 2008. Vol. 79, Iss. 3. P. e1−e3. doi:

23. Decreased Serum Relaxin−2 Is Correlated with Impaired Islet β−Cell Function in Patients with Unstable Angina and Abnormal Glucose Metabolism / X. Gao, H. Li, P. Wang, H. Chen. Int. Heart J. 2018. Vol. 59, Iss. 2. P. 272−278. doi:−082

24. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice / A. Bitto et al. Clin. Sci. (Lond.). 2013. Vol. 125, Iss. 12. P. 575−585. doi:

25. Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition / P. Wang et al. J. Endocrinol. Invest. 2009. Vol. 32. P. 242−247. doi:

26. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes / H. H. Ng et al. Scientific Reports. 2017. Vol. 7, № 39604. doi:

27. Relaxin−2 does not ameliorate nephropathy in an experimental model of Type−1 diabetes / T. B. Dschietzig et al. Kidney Blood Press Res. 2015. Vol. 40, № 1. P. 77−88. doi:

28. The Anti−fibrotic Hormone Relaxin is not Reno−protective, Despite Being Active, in an Experimental Model of Type 1 Diabetes / S. E. Wong et al. Protein & Peptide Letters. 2013. Vol. 20, Iss. 9. P. 1029−1038. doi:

29. Serelaxin (recombinant human relaxin−2) treatment affects the endogenous synthesis of long chain poly−unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue / A. Aragón−Herrera et al. Pharmacol. Research. 2019. Vol. 144. P. 51−65. doi:

30. Hu Y., Hu F. B., Manson J. E. Marine omega−3 supplementation and cardiovascular disease: an updated meta−analysis of 13 randomized controlled trials involving 127 477 participants. J. Am. Heart Assoc. 2019. Vol. 8, № 19. Art. e013543. doi:

31. Blood n−3 fatty acid levels and total and cause−specific mortality from 17 prospective studies / W. S. Harris et al. Nat. Commun. 2021. Vol. 12. Art. 2329. doi:−021−22370−2

32. Relaxin has beneficial effects on liver lipidome and metabolic enzymes / A. Aragón−Herrera et al. FASEB J. 2021. Vol. 35, Iss. 7. Art. e21737. doi:

33. Antiatherosclerotic effects of serelaxin in apolipoprotein E−deficient mice / V. Tiyerili et al. Atherosclerosis. 2016. Vol. 251. P. 430−437. doi:

34. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal−vascular cells / G. J. Hausman et al. J. Anim. Sci. 2006. Vol. 84, Iss. 7. P. 1666−1681. doi:−539

35. Central and peripheral administration of human relaxin−2 to adult male rats inhibits food intake / B. M. C. McGowan et al. Diabetes. Obes. Metab. 2010. Vol. 12, Iss. 12. P. 1090−1096. doi:−1326.2010.01302.x

36. Sex−Specific Effects of Chronic Administration of Relaxin−3 on Food Intake, Body Weight and the Hypothalamic−Pituitary−Gonadal Axis in Rats / J. Calvez, C. Ávila, G. Guèvremont, E. Timofeeva. J. Neuroendocrinol. 2016. Vol. 28, Iss. 12. doi:

37. The expression of relaxin−3 in adipose tissue and its effects on adipogenesis / H. Yamamoto et al. Protein Pept. Lett. 2014. Vol. 21, Iss. 6. P. 517−522. doi:

38. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation / V. Cruzat et al. Nutrients. 2018. Vol. 10, Iss. 11. Art. 1564. doi:

39. Borst P. The malate−aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life. 2020. Vol. 72, Iss. 11. P. 2241−2259. doi:

40. Pavlova N. N., Hui Sh., Ghergurovich J. M. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell. Metab. 2018. Vol. 27, Iss. 2. P. 428−438.e5. doi:

41. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion / J. Zhang et al. Mol. Cell. 2014. Vol. 56, Iss. 2. P. 205−218. doi:

42. Human Relaxin−2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia−Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up−Regulation / S. Nistri, C. Fiorillo, M. Becatti, D. Bani. Antioxidants. 2020. Vol. 9, Iss. 9. P. 774. doi:

43. Relaxin protects cardiomyocytes against hypoxia−induced damage in in−vitro conditions: Involvement of Nrf2/HO−1 signaling pathway / A. A. Waza et al. Life Sci. 2018. Vol. 213. P. 25−31. doi:

44. Relaxin improves TNF−alpha−induced endothelial dysfunction: role of glucocorticoid receptor and phosphatidylinositol 3−kinase signalling / T. Dschietzig et al. Cardiovasc. Res. 2012. Vol. 95, Iss. 1. P. 97−107. doi:

45. Relaxin ameliorates high glucose−induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway / X. Wei et al. Exp. Med. 2018. Vol. 15, Iss. 1. P. 691−698. doi:

Go on Top