Previous Next

ARCHIVE

№3' 2021

INFECTIOUS DISEASES

International Medical Journal, Vol. 27., Iss. 3, 2021, P. 76−79.


DOI (https://doi.org/10.37436/2308-5274-2021-3-16)

GENERAL CHARACTERISTICS OF TOLL-LIKE RECEPTORS AND THEIR PARTICIPATION IN IMMUNE RESPONSE


Kseniia Artemivna Veklych, Liadova T. I., Popov M. M., Gololobova O. V., Sorokina O. G.

V. N. Karazin Kharkiv National University, Ukraine

The innate immune response is the first step in protecting the body against pathogens. Cells of this response express various image recognition receptors, including Toll−like (TLR), which detect pathogen−associated molecular patterns and induce an inflammatory immune response. TLRs are involved into recognition of quite all pathogens, i.e. bacteria, viruses, fungi and protozoa. All TLRs are type 1 transmembrane proteins that contain leucine−rich repeats responsible for recognizing pathogen−associated molecular patterns and activating downlink signaling. The signaling cascade triggered by TLR type 9 depends on intracellular transport of the receptor and begins as soon as it and its ligand enter the endolysosomal system. Activation of this receptor, depending on the cell type, leads to the production of various mediators. The etiopathogenesis of most autoimmune diseases has not been fully studied, as their development may be facilitated by a large number of factors. A number of studies in TLR9−deficient mice prone to lupus have demonstrated a particular need for TLR9 to form the autoantibodies in vivo, indicating a critical role for innate immune activation in autoimmune processes. Previous studies of the involvement of TLR9 into signal transduction when pathogens enter the body have shown that activation of receptors occurs after their interaction with unmethylated CrG−DNA. However, recent studies have demonstrated an importance of these receptors in the case of RNA−containing viruses. Further in−depth study of the involvement of TLR in the body protection against both DNA and RNA−containing viruses will not only provide a better understanding of immune system damage, but also develop the methods and tools supporting and strengthening the immune response.

Key words: measles, Toll−like receptors, cytokines, interferon, autoimmune diseases.


REFERENCES


1. Osnovi zagal'noї іmunologії: pіdruchnik za zag. red. M. M. Popova / M. M. Popov ta іn. Kharkіv, 2018. 290 s.

2. Galli S. J., Borregaard N., Wynn T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils // Nat. Immunol. 2011. № 12 (11). R. 1035−1044. doi: 10.1038/ni.2109

3. Kumar V., Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game // Int. Rev. Immunol. 2018. № 37 (2). R. 90−110. doi: 10.1080/08830185.2017.1380199

4. Takeuchi O., Akira S. Pattern recognition receptors and inflammation // Cell. 2010. № 140 (6). R. 805−820. doi: 10.1016/j.cell.2010.01.022

5. Areschoug T., Gordon S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands // Contrib. Microbiol. 2008. № 15. R. 45−60. doi: 10.1159/000135685

6. Uematsu S., Akira S. Toll−like receptors and innate immunity // J. Mol. Med. (Berl.). 2006. № 84 (9). R. 712−725. doi: 10.1007/s00109−006−0084−y

7. Majewska M., Szczepanik M. The role of Toll−like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation // Postepy Hig. Med. Dosw. (Online). 2006. № 60. R. 52−63.

8. O'Neill L. A., Bowie A. G. The family of five: tIR − domain − containing adaptors in Toll−like receptor signaling // Nat. Rev. Immunol. 2007. № 7. R. 353−364. doi: 10.1038/nri2079

9. Leucine−rich repeats and pathogen recognition in Toll−like receptors / J. K. Bell et al. // Trends Immunol. 2003. Vol. 24. P. 528−533. doi: 10.1016/s1471−4906(03)00242−4

10. Bowie A., O'Neill L. A. The interleukin−1 receptor/Toll−like receptor superfamily: signal generators for pro−inflammatory interleukins and microbial products // J. Leukoc Biol. 2000. Vol. 67 (4). P. 508−514. doi: 10.1002/jlb.67.4.508

11. Akira S., Takeda K. Toll−like receptor signaling // Nat. Rev. Immunol. 2004. Vol. 4 (7). P. 499−511. doi: 10.1038/nri1391

12. The evolution of vertebrate Toll−like receptors / J. C. Roach et al. // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102 (27). P. 9577−9582. doi: 10.1073/pnas.0502272102

13. Kawai T., Akira S. Toll−like receptors and their crosstalk with other innate receptors in infection and immunity // Immunity. 2011. Vol. 34 (5). P. 637−650. doi: 10.1016/j.immuni.2011.05.006

14. Recognition of double−stranded RNA and activation of NF−kappaB by Toll−like receptor 3 / L. Alexopoulou, A. C. Holt, R. Medzhitov, R. A. Flavell // Nature. 2001. Vol. 413 (6857). P. 732−738. doi: 10.1038/35099560

15. Kawasaki T., Kawai T. Toll−like receptor signaling pathways // Front. Immunol. 2014. Vol. 5. P. 461. doi: https://doi.org/10.3389/fimmu.2014.00461

16. A protein associated with Toll−like receptor (TLR) 4 (PRAT4A) is required for TLR−dependent immune responses / K. Takahashi et al. // J. Exp. Med. 2007. Vol. 204 (12). P. 2963−2976. doi: 10.1084/jem.20071132

17. TLR9 signals after translocating from the ER to CpG DNA in the lysosome / E. Latz et al. // Nat. Immunol. 2004. Vol. 5. P. 190−198. doi: 10.1038/ni1028

18. UNC93B1 delivers nucleotide − sensing Toll−like receptors to endolysosomes / Y. M. Kim, M. M. Brinkmann, M. E. Paquet, H. L. Ploegh // Nature. 2008. Vol. 452. P. 234−238. doi: 10.1038/nature06726

19. Sasai M., Linehan M. M., Iwasaki A. Bifurcation of Toll−like receptor 9 signaling by adaptor protein 3 // Science. 2010. Vol. 329. P. 1530−1534. doi: 10.1126/science.1187029

20. Slc15a4, AP−3, and Hermansky − Pudlak syndrome proteins are required for Toll−like receptor signaling in plasmacytoid dendritic cells / A. L. Blasius et al. // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. P. 19973−19978. doi: https://doi.org/10.1073/pnas.1014051107

21. Sato A., Linehan M. M., Iwasaki A. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P. 17343−17348. doi: https://doi.org/10.1073/pnas.0605102103

22. Sequential control of Toll−like receptor − dependent responses by IRAK1 and IRAK2 / T. Kawagoe et al. // Nat. Immunol. 2008. Vol. 9. P. 684−691.

23. Inhibition of TRAF6 ubiquitin − ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation / Y. Min et al. // Autophagy. 2018. Vol. 14. P. 1347−1358. doi: https://doi.org/10.1080/15548627.2018.1474995

24. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB: p52 dimers / G. Bonizzi et al. // Embo J. 2004. Vol. 23. P. 4202−4210. doi: https://doi.org/10.1038/sj.emboj.7600391

25. The kinase TAK1 can activate the NIK−I kappaB as well as the MAP kinase cascade in the IL−1 signalling pathway / J. Ninomiya − Tsuji et al. // Nature. 1999. Vol. 398. P. 252−256. doi: https://doi.org/10.1038/18465

26. Integral role of IRF−5 in the gene induction programme activated by Toll−like receptors / A. Takaoka et al. // Nature. 2005. Vol. 434. P. 243−249. doi: https://doi.org/10.1038/nature03308

27. Human TLR‐7‐, ‐8‐, and ‐9‐mediated induction of IFN‐alpha/beta and ‐lambda Is IRAK‐4 dependent and redundant for protective immunity to viruses / Yang K, Puel A, Zhang S, et al. // Immunity. 2005. Vol. 23. P. 465−478. doi: https://doi.org/10.3410/f.1029148.343575

28. Interferon‐alpha induction through Toll‐like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 / T. Kawai et al. // Nat. Immunol. 2004. Vol. 5. P. 1061−1068. doi: https://doi.org/10.1038/ni1118

29. Spatiotemporal regulation of MyD88‐IRF‐7 signalling for robust type‐I interferon induction / K. Honda et al. // Nature. 2005. Vol. 434. P. 1035−1040. doi: https://doi.org/10.1038/nature03547

30. Toll‐like receptor‐mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin‐sensitive PI(3)K‐mTOR‐p70S6K pathway / W. Cao et al. // Nat. Immunol. 2008. Vol. 9. P. 1157−1164. doi: https://doi.org/10.1038/ni.1645

31. BAD‐LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells / A. Combes et al. // Nat. Commun. 2017. Vol. 8. P. 913.

32. Lou H., Pickering M. C. Extracellular DNA and autoimmune diseases // Cell Mol. Immunol. 2018. Vol. 15. P. 746−755. doi: https://doi.org/10.1038/cmi.2017.136

33. Interleukin‐1 receptor‐associated kinase‐1 plays an essential role for Toll‐like receptor (TLR)7‐ and TLR9‐mediated interferon‐{alpha} induction / S. Uematsu et al. // J. Exp. Med. 2005. Vol. 201. P. 915−923. doi: https://doi.org/10.1084/jem.20042372

34. Toll−like receptor 9 controls anti−DNA autoantibody production in murine lupus / R. Christensen Sean et al. // J. Exp. Med. 2005. Vol. 202 (2). P. 321−331. doi: 10.1084/jem.20050338

35. Cathepsin K‐dependent toll‐like receptor 9 signaling revealed in experimental arthritis / M. Asagiri et al. // Science. 2008. Vol. 319. P. 624−627.

36. A tolerogenic role for Toll‐like receptor 9 is revealed by B‐cell interaction with DNA complexes expressed on apoptotic cells / K. Miles et al. // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. P. 887−892. doi: https://doi.org/10.1073/pnas.1109173109

37. Opiate use inhibits TLR9 signaling pathway in vivo: possible role in pathogenesis of HIV−1 infection / Y. Liao et al. // Sci. Rep. 2017. Vol. 7. P. 13071. doi: 10.1038/s41598−017−12066−3

Go on Top