Previous Next

ARCHIVE

№2' 2021

PULMONOLOGY

International Medical Journal, Vol. 27., Iss. 2, 2021, P. 16−21.


DOI (https://doi.org/10.37436/2308-5274-2021-2-3)

MODERN VIEW ON POSSIBILITIES AND DIRECTIONS OF PATHOGENETIC THERAPY OF PATIENTS WITH TUBERCULOSIS


Hrek I. I., Maryna Mykolayivna Kochuieva, Valentyna Hryhorivna Psarova, Yakovenko O. L., Kochuiev H. I., Anton Viktorovych Rohozhyn

Kharkiv Medical Academy of Postgraduate Education, Ukraine
V. N. Karazin Kharkiv National University, Ukraine
Sumy State University, Ukraine

Pathogenetic therapy is an important stage in comprehensive treatment of tuberculosis, which accelerates the reversal of inflammation, restores an adequate immune response, enhances reparative processes in the body, prevents the formation of severe residual changes, and prevents adverse reactions to anti−TB drugs. Drug methods of pathogenetic effects include detoxification, anti−inflammatory, desensitizing, antioxidant and immune therapy, use of antihypoxants, angioprotectors, hormonal drugs, metabolic regulators, vitamins, as well as maintenance therapy aimed at prevention and elimination of the reactions. One of the ways of effective and safe treatment of secondary immunological insufficiency is a personalized approach to treatment. The nature of inflammation in the affected organ is a factor that allows to individualize the approach to the pathogenetic treatment of tuberculosis. The appointment of pathogenetic therapy should be based on the results of a comprehensive analysis of the patient's condition, which takes into account the form, clinical course, features of pathomorphosis, depending on the immune system, free radical oxidation and antioxidant protection, metabolism and energy metabolism. Now the studying the directions of pathogenetic therapy of patients with pulmonary tuberculosis is still actual. Assuming the differences in immune status, indices of free radical oxidation and antioxidant protection, the use of combinations of drugs that have immune modulatory and antioxidant effects in patients with tuberculosis is justified and can improve treatment in terms of resorption resorption and infiltration resorption, as well as reducing the frequency of adverse toxic reactions.

Key words: tuberculosis, pathogenetic therapy, antioxidants, immunomodulators.


REFERENCES


1. Feshchenko Yu. І., Mel'nik V. M., Opanasenko M. S. Neefektivne lіkuvannya khvorikh na tuberkul'oz legen' і iogo poperedzhennya. K.: Vidavnitstvo "Lіra−K", 2019.

2. Effectiveness of hepatoprotective drugs for anti−tuberculosis drug−induced hepatotoxicity: a retrospective analysis / Z. Saito et al. // BMC infectious diseases. 2016. Vol. 16 (1). P. 668. doi: https://doi.org/10.1186/s12879−016−2000−6

3. Modern Collapse Therapy for Pulmonary Tuberculosis / D. V. Krasnov et al. // Thoracic surgery clinics. 2019. Vol. 29 (1). P. 47−58. doi: https://doi.org/10.1016/j.thorsurg.2018.09.005

4. Liver toxicity associated with tuberculosis chemotherapy in the REMoxTB study / C. D. Tweed et al. // BMC medicine. 2018. Vol. 16 (1). P. 46. doi: https://doi.org/10.1186/s12916−018−1033−7

5. Demidik S. N., Vol'f S. B. Immunokorrektsiya v kompleksnom lechenii tuberkuleza legkikh. Grodno: GrGMU, 2016.

6. Immunotherapy for non−responders among patients of spinal tuberculosis / A. Gupta, A. Gupta, A. Kumar, S. Arora // The Indian J. of tuberculosis. 2016. Vol. 63 (2). P. 79−85. doi: https://doi.org/10.1016/j.ijtb.2015.07.006

7. Huang C. Y., Hsieh W. Y. Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: A systematic review and meta−analysis // Human vaccines & immunotherapeutics. 2017. Vol. 13 (9). P. 1960−1971. doi: https://doi.org/10.1080/21645515.2017.1335374

8. Potential of adjunctive Mycobacterium w (MIP) immunotherapy in reducing the duration of standard chemotherapy against tuberculosis / M. Chahar et al. // The Indian J. of tuberculosis. 2018. Vol. 65 (4). P. 335−344. doi: https://doi.org/10.1016/j.ijtb.2018.08.004

9. Mycobacterium w immunotherapy for treating pulmonary tuberculosis − a systematic review / S. Pandie, M. E. Engel, Z. S. Kerbelker, B. M. Mayosi // Current pharmaceutical design. 2014. Vol. 20 (39). P. 6207−6214. doi: https://doi.org/10.2174/1381612820666140905150215

10. Zaikov S. V., Plikanchuk O. V. Perspektivi zastosuvannya іmunomodulyuval'nikh zasobіv pri tuberkul'ozі organіv dikhannya // Ratsіonal'na farmakoterapіya. 2008. № 3 (2). URL: http://rpt.health−ua.com/article/136.html

11. Liu C. H., Liu H., Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion // Cellular & molecular immunology. 2017. Vol. 14 (12). P. 963−975. doi: https://doi.org/10.1038/cmi.2017.88

12. Immune response to mycobacterium tuberculosis: A narrative review / M. De Martino, L. Lodi, L. Galli, E. Chiappini // Frontiers in Pediatrics. 2019. Vol. 7. doi:10.3389/fped.2019.00350

13. Huang L., Russell D. G. Protective immunity against tuberculosis: what does it look like and how do we find it? // Current opinion in immunology. 2017. Vol. 48. P. 44−50. doi: https://doi.org/10.1016/j.coi.2017.08.001

14. Mayer−Barber K. D., Barber D. L. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection // Cold Spring Harbor perspectives in medicine. 2015. Vol. 5 (12). doi: https://doi.org/10.1101/cshperspect.a018424

15. Steigler P., Verrall A. J., Kirman J. R. Beyond memory T−cells: mechanisms of protective immunity to tuberculosis infection // Immunology and cell biology. 2019. Vol. 97 (7). P. 647−655. doi: https://doi.org/10.1111/imcb.12278

16. Ernst J. D. Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design // Cell host & microbe. 2018. Vol. 24 (1). P. 34−42. doi: https://doi.org/10.1016/j.chom.2018.06.004

17. Cytokines and chemokines in Mycobacterium tuberculosis infection / R. Domingo−Gonzalez, O. Prince, A. Cooper, S. A. Khader // Microbiology spectrum. 2016. Vol. 4 (5). URL: 10.1128/microbiolspec.TBTB2−0018−2016. doi: https://doi.org/10.1128/microbiolspec.TBTB2−0018−2016

18. Biomedica: revista del Instituto Nacional de Salud / J. L. Torres−Castiblanco, J. A. Carrillo, D. Hincapié−Urrego, A. Rojas−Villarraga. 2018. Vol. 38 (1). P. 17−26. doi: https://doi.org/10.7705/biomedica.v38i0.3458

19. Rol' patogenetichnoї terapії v lіkuvannі khvorikh na khіmіorezistentnii tuberkul'oz / L. D. Todorіko ta іn. // Bukovins'kii medichnii vіsn. 2011. № 3 (59). S. 253−255.

20. Karpov V. Preparat glutoksim v kompleksnom lechenii tuberkuleza legkikh // Tuberkulez i sotsial'no znachimye zabolevaniya. 2014. № 4. S. 37−42.

21. Khaitov R. M., Pinegin B. V. Sovremennye immunomodulyatory. Klassifikatsiya. Mekhanizm deistviya. M.: Farmus Print, 2008.

22. Antioxidants: Friend or foe? / R. Sarangarajan et al. // Asian Pacific J. of tropical medicine. 2017. Vol. 10 (12). P. 1111−1116. doi: https://doi.org/10.1016/j.apjtm.2017.10.017

23. Slivka V. І. Peroksidne okisnennya lіpіdіv u khvorikh na tuberkul'oz legen' // Bukovins'kii medichnii vіsn. 2013. № 4 (68). S. 188−190.

24. Butov D. O. Dinamіka pokaznikіv oksidantno−antioksidantnoї sistemi u protsesі lіkuvannya khvorikh na vpershe dіagnostovanii tuberkul'oz legen' // Іnfektsіinі khvorobi. 2013. № 2. S. 85−88.

25. Nutritional supplements for people being treated for active tuberculosis / L. Grobler, S. Nagpal, T. D. Sudarsanam, D. Sinclair // The Cochrane database of systematic reviews. 2016. № 6. CD006086. doi: https://doi.org/10.1002/14651858.CD006086.pub4

26. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients / E. Seyedrezazadeh et al. // Respirology (Carlton, Vic.). 2008. Vol. 13 (2). P. 294−298. doi: https://doi.org/10.1111/j.1440−1843.2007.01200.x

27. Hatzios S. K., Bertozzi C. R. The regulation of sulfur metabolism in Mycobacterium tuberculosis // PLoS pathogens. 2011. Vol. 7 (7). e1002036. doi: https://doi.org/10.1371/journal.ppat.1002036

28. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis / V. Saini et al. // Nature communications. 2020. Vol. 11 (1). P. 557. doi: https://doi.org/10.1038/s41467−019−14132−y

29. A minireview on N−acetylcysteine: An old drug with new approaches / I. Elbini Dhouib et al. // Life sciences. 2016. Vol. 151. P. 359−363. doi: https://doi.org/10.1016/j.lfs.2016.03.003

30. Effect of selenium supplementation on antioxidant markers: a systematic review and meta−analysis of randomized controlled trials / M. Hasani et al. // Hormones (Athens, Greece). 2019. Vol. 18 (4). P. 451−462. doi: https://doi.org/10.1007/s42000−019−00143−3

31. Surai P. F., Kochish I. I. Nutritional modulation of the antioxidant capacities in poultry: the case of selenium // Poultry science. 2019. Vol. 98 (10). P. 4231−4239. doi: https://doi.org/10.3382/ps/pey406

32. Avery J. C., Hoffmann P. R. Selenium, selenoproteins, and immunity // Nutrients. 2018. Vol. 10 (9). P. 1203. doi: https://doi.org/10.3390/nu10091203

33. Selenium, selenoproteins and viral infection / O. M. Guillin, C. Vindry, T. Ohlmann, L. Chavatte // Nutrients. 2019. Vol. 11 (9). P. 2101. doi: https://doi.org/10.3390/nu11092101

34. Qian F., Misra S., Prabhu K. S. Selenium and selenoproteins in prostanoid metabolism and immunity // Critical reviews in biochemistry and molecular biology. 2019. Vol. 54 (6). P. 484−516. doi: https://doi.org/10.1080/10409238.2020.1717430

35. Serum selenium levels in tuberculosis patients: A systematic review and meta−analysis / B. A. Muzembo et al. // J. of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS). 2018. Vol. 50. P. 257−262. doi: https://doi.org/10.1016/j.jtemb.2018.07.008

36. Immune modulatory and anti−oxidative effect of selenium against pulmonary tuberculosis / M. I. Hussain et al. // Pakistan J. of pharmaceutical sciences. 2019. Vol. 32 (Suppl. 2). P. 779−784.

37. Micronutrient levels of tuberculosis patients during the intensive phase, a prospective cohort study / B. E. Feleke, T. E. Feleke, D. Mekonnen, M. B. Beyene // Clinical nutrition ESPEN. 2019. Vol. 31. P. 56−60. doi: https://doi.org/10.1016/j.clnesp.2019.03.001

Go on Top