Previous Next


№4' 2020


International Medical Journal, Vol. 26., Iss. 4, 2020, P. 21−24.



Ambrosova T. M., Ashcheulova T. V.

Kharkiv National Medical University, Ukraine

The main cardiovascular diseases affect the processes of myocardial remodeling, which further contributes to the formation of systolic or diastolic heart dysfunction. The formation of myocardial dysfunction is primarily associated with left ventricular hypertrophy when under hemodynamic loading, firstly, wall rigidity increases, secondly, myocardial fibrosis is formed. The latter is one of the key factors of the hypertrophic process caused by the accumulation of collagen, which leads to a aggravation of the left ventricle relaxation processes. Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that are clinically manifested by alterations in the size, shape, and function of heart as a result of the heart muscle injury. It has been determined that fibrosis is an early morphological sign of injury in patients with left ventricular overload, as well as a factor in the development of diastolic and systolic dysfunctions. Compensatory left ventricular hypertrophy transforms into heart failure due to the fibrosis development. In hypertrophy the content of elastic collagen type III decreases and rigid collagen type I increases. The essential role of the extracellular matrix in myocardial fibrosis formation is emphasized. Cardiac fibrosis is a process of pathological remodeling of the extracellular matrix, which leads to abnormalities in its composition and dysfunction of the heart muscle. The extracellular matrix plays a key role in organogenesis and post−traumatic healing in tissue injuries. The study of intercellular interactions of the extracellular matrix will provide a better understanding of the mechanisms of changes in geometry and function of the heart, and investigation of the activity of matrix components will open new opportunities for targeted therapeutic effects on molecular mechanisms of cardiac remodeling.

Key words: diastolic dysfunction, extracellular matrix, myocardial fibrosis, cardiomyocytes, fibroblasts.


1. Bauml M. A., Underwood D. A. Left ventricular hypertrophy: an overlooked cardiovascular risk factor // Cleveland. Clin. J. Med. 2010. Vol. 77 (6). P. 381−387. doi:

2. Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)−possible therapeutic perspectives // J. Am. Soc. Hypertens. 2011. Vol. 5 (6). P. 449−455. doi:

3. Heart Failure With Preserved Ejection Fraction Molecular Pathways of the Aging Myocardium / F. S. Loffredo, A. P. Nikolova, J. R. Pancoast, R. T. Lee // Circ. Res. 2014. Vol. 115. P. 97−107. doi:

4. The Euro Heart Failure survey programme a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis / J. G. F. Cleland et al. // Eur. Heart J. 2003. Vol. 24 (5). P. 442−463. doi: 10.1016/s0195−668x(02)00823−0

5. Diastolic heart failure − evidence of increased myocardial collagen turnover linked to diastolic dysfunction / R. Martos et al. // Circulation. 2007. Vol. 115. P. 888−895. doi:

6. Cohn J. N., Ferrari R., Sharpe N. J. Cardiac remodeling−concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling // Am. Coll. Cardiol. 2000. Vol. 35 (3). P. 569−582. doi:−1097(99)00630−0

7. Assessment of nonischemic myocardial fibrosis / C. Jellis, J. Martin, J. Narula, T. H. Marwick // J. Am. Coll. Cardiol. 2010. Vol. 56. P. 89−97. doi:

8. The processes and mechanisms of cardiac and pulmonary fibrosis / L. A. Murtha et al. // Front. Physiol. 2017. Vol. 8. P. 121−132.

9. Souders C. A., Bowers S. L. K., Baudino T. A. Cardiac fibroblast // Cell. 2009. Vol. 105. P. 1164−1176. doi:

10. Zeisberg E. M., Kalluri R. Origins of cardiac fibroblasts // Circ. Res. 2010. Vol. 107. P. 1304−1312. doi:

11. Cardiac fibrosis: the fibroblast awakens / J. G. Travers et al. // Circ. Res. 2016. Vol. 118. P. 1021−1040.

12. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126. P. 663−676. doi:

13. Cardiac regeneration lessons from development / F. X. Galdos et al. // Circ. Res. 2017. Vol. 120. P. 941−959.

14. Revisiting cardiac cellular composition / A. R. Pinto et al. // Circ. Res. 2016. Vol. 118. P. 400−409.

15. Imaging of myocardial fibrosis in patients with end−stage renal disease: current limitations and future possibilities / P. M. Grahamown et al. // Biomed. Res. Int. 2017. Vol. 2017. P. 1−14.

16. Fibrosis and cardiac arrhythmias / S. de Jong, T. A. B. van Veen, H. V. M. van Rijen, J. M. T. de Bakker // J. Cardiovasc. Pharmacol. 2011. Vol. 57. P. 630−638. doi:

17. Phenotyping of myocardial fibrosis in hypertensive patients with heart failure. Influence on clinical outcome / B.Ravassa et al. // J. Hypertension. 2017. Vol. 35. P. 853−861. doi:

18. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study / H. Izawa et al. // Circulation. 2005. Vol. 112. P. 2940−2945. doi:

19. Echegaray K. Role of myocardial collagen in severe aortic stenosis with preserved ejection fraction and symptoms of heart failure / K. Echegaray et al. // Rev. Esp. Cardiol (English ed). 2017. Vol. 70. P. 832−840. doi:

20. Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ−specific mechanisms associated with tissue fibrosis // Am. J. Physiol. Cell. 2013. Vol. 304. P. 216−225. doi:

Go on Top