Previous Next

CURRENT ISSUE

№4' 2020

THERAPY

International Medical Journal, Vol. 26., Iss. 4, 2020, P. 12−20.


DOI (https://doi.org/10.37436/2308-5274-2020-4-2)

BLOOD PRESSURE, HYPOCHONDRIA AND DEPRESSION: MATHEMATICAL MODELS OF RELATIONSHIP


Drozdova I. V., Pavlovska M. O., Pavlovskyi S. A.

Kyiv International University, Ukraine

Modern clinical diagnostics has standards and medical systems for the diagnosis of hypertension, advanced information technology. Mathematical models of the relationship between systolic blood pressure and psychological indices of hypochondria and depression have been described. Methods of mathematical statistics were applied as follows: factor, cluster, discriminant, regression analyzes, Markov chains, polynomial splines and neural networks, they were implemented in software products, such as NeuroModelDBPM, "Monitoring", VerMed. The presented model of interaction of systolic arterial pressure, Hs−hypochondria, D−depression confirms an importance of these states at an initial stage of arterial hypertension and allows the allocation of four options of psychosomatic relations in patients: organ and system somatic defeats of psychosomatic character, somaticized psychiatric reactions, reactions of exogenous type. It has been shown that disharmonious personality traits, risk factors, disorder of chronobiological structure of blood pressure, left ventricular hypertrophy and its diastolic dysfunction contribute to the formation of nosogeny in hypertension. Their development is hindered by harmonious personality traits, keeping a healthy lifestyle, minimal changes in the chronobiological structure of blood pressure, a slight degree of left ventricular hypertrophy and its diastolic dysfunction. The leading cardiovascular risk factors in patients with hypertension are stress, burdened heredity, low physical activity, carbohydrate abuse, higher education and high socioeconomic status. Nosogeny in hypertension should also be considered as a risk factor, as well as should be taken into account in the stratification of the overall cardiovascular risk and accomplishing a proper adjustments.

Key words: arterial hypertension, mathematical statistics, arterial pressure, hypochondria, depression, information technology.


REFERENCES


1. Guidelines for the Early Management of Patients with Acute Ishemic Stroke: A Guidelines for Healthcare Professionals from the American Heart Association/American Stroke Association / W. Powers et al. // Stroke, https:doi.org/10.1161/STR.0000000000000158. Accessed 24 January 2018. URL: https://online.epocrates.com/diseases/107862/Ischemic−stroke/Guidelines doi: https://doi.org/10.1161/str.0000000000000172

2. Atlas Writing Group. European Society of Cardiology: Cardiovascular Disease Statistics 2017 / A. Timmis et al. // Eur. Heart J. 2017. Vol. 27.

3. Osnovnі pokazniki іnvalіdnostі ta dіyal'nostі mediko−sotsіal'nikh ekspertnikh komіsіi Ukraїni za 2019 rіk: analіtiko−іnformatsіinii dovіdnik / A. V. Іpatov ta іn. Dnіpro: Aktsent PP, 2020. 183 c.

4. Khachapurіdze T. M. Іnformatsіina tekhnologіya pіdtrimki priinyattya rіshen' v sistemі monіtoringu pri dіagnostitsі zakhvoryuvan'. K., 2006. № 21.

5. Pristavka P. O., Dereza A. Yu. Іnformatsіino−dіagnostichna sistema "ViStA Med" obrobki signalіv arterіal'nogo tisku dobovogo monіtoruvannya // Elektronіka ta sistemi upravlіnnya. 2006. № 2 (8). S. 13−18.

6. Pristavka P. O. Polіnomіal'nі splaini pri obrobtsі danikh. Dnіpropetrovs'k: Vid−vo DGU, 2004. 236 s.

7. Krishtal' V. V., Drozdova І. V., Dzyak G. V. Nozogenії pri arterіal'nіi gіpertenzії. Dnіpro: Porogi, 2008. 288 s.

8. Statistichna obrobka danikh / V. P. Babak, A. Ya. Bіlets'kii, O. P. Pristavka, P. O. Pristavka. K.: MІVVTs, 2001. 388 s.

9. Faktornyi, diskriminantnyi i klasternyi analiz / Dzh. O. Kim i dr. M.: Finansy i statistika, 1989. 215 s.

10. Aivazyan S. A., Bezhaeva Z. I., Staroverov O. V. Klassifikatsiya mnogomernykh nablyudenii. M.: Statistika, 1974. 240 s.

11. Afifi A., Eizen S. Statisticheskii analiz. Podkhod s ispol'zovaniem EVM. M.: Mir, 1982. 488 s.

12. Dyuran B., Odell P. Klasternyi analiz. M.: Statistika, 1975. 128 s.

13. Khaikin S. Neironnye seti. Polnyi kurs. M.: Vil'yams, 2006. 1104 s.

14. Pristavka O. P., Matsuga O. M. Algoritmіzatsіya obrobki neodnorіdnikh danikh na osnovі dvovimіrnogo splain−normal'nogo rozpodіlu. Matematichne modelyuvannya. Dnіprodzerzhins'k, 2008. № 2 (19). S. 10−15.

15. Pristavka A. F., Raiko O. V. Smesi i splain−raspredeleniya na neodnorodnykh normal'nykh prostranstvakh. Dnepropetrovsk: Izd−vo DGU, 1987. 233 s.

16. Matsuga O. M. Іnformatsіina tekhnologіya obrobki neodnorіdnikh medichnikh danikh dlya pіdtrimki priinyattya rіshen' pіd chas dіagnostiki. Dnіpropetrovs'k. 2007. 18 s.

17. Hosmer D. W., Lemeshow S. Applied Logistic Regression. New York, Chichester, Wiley, 2002. 392 r.

18. Khachapuridze T. N. Modelirovanie monitoringa serdechno−sosudistoi sistemy // Aktual'nі problemi avtomatizatsії ta іnformatsіinikh tekhnologіi. 2003. № 7. S. 142−149.

19. Dereza A. Yu. Doslіdzhennya ta vprovadzhennya іnformatsіinikh tekhnologіi operativnogo analіzu v sistemakh medichnogo monіtoringu. Dnіpropetrovs'k, 2006. 22 s.

20. Dereza A. Yu., Pristavka P. O. Kuskovo−markіvs'ka model' protsesu zmіni arterіal'nogo tisku za chasom // Aktual'nі problemi avtomatizatsії ta іnformatsіinikh tekhnologіi. 2005. № 9. S. 3−12.

Go on Top