Previous Next


№3' 2020


International Medical Journal, Vol. 26., Iss. 3, 2020, P. 5−9.



Fylenko Ya. M.

Kharkiv Medical Academy of Postgraduate Education, Ukraine

This review is devoted to the analysis of the role of adipokines in formation of pathological changes in renal function and structure. The patients with chronic kidney disease have a high risk of cardiovascular disease. Currently, the role of systemic hormonal and metabolic factors in the pathogenesis of the kidneys is growing. A promising area of pathogenetic prevention and treatment of kidney disease is an interdisciplinary approach, whereat the adipokine imbalance is of particular interest. Adipose tissue and its messengers, adipokines, are known to be highly associated with kidney disease. Adipocytes are metabolically active cells, producing the signaling lipids, metabolites and protein factors, i.e. adipokines. The interaction of adipose tissue with the kidney is called the adipose kidney axis, being important for the normal functioning of the body, as well as its response to an injury. It has a strong therapeutic potential in respect of the growing rates of chronic kidney disease. Adipocyte hypertrophy is often accompanied by the development of tissue fibrosis, hypoxia, and secretion of pro−inflammatory cytokines (such as tumor necrosis factor or interleukin, which triggers the cell inflammation). Dysfunction of adipose tissue contributes to the development of cardiovascular disease at the local and systemic levels. Thus, for the early diagnosis of chronic kidney disease into the diagnostic program, in addition to the generally accepted indices, the determination of adipokines: for example, serum leptin, adiponectin, omentin, visfatin, microalbuminuria, blood lipid spectrum, intrarenal and functional status of the kidneys with the assessment of functional renal reserve is recommended to be included. Early detection of the disease, new approaches to its diagnosis and treatment can help in reducing the risk of a high incidence and mortality from renal disease.

Key words: chronic kidney disease, nephropathy, adipokines, leptin, resistin, adiponectin, visfatin, omentin.


1. Obesity, kidney dysfunction and hypertension: mechanistic links / J. E. Hall et al. // Nature reviews nephrology. 2019. Vol. 15, Iss. 6. P. 367−385. doi:−019−0145−4

2. Risheng Y., Scherer P. E. Adiponectin, driver or passenger on the road to insulin sensitivity // Mol. Metab. 2013. № 2 (3). R. 133−141.

3. Zhu Q., Scherer Ph. E. The Role of Immature and Mature Adipocytes in Hair Cycling // Nature reviews nephrology. 2018. Vol. 14, Iss. 2. P. 105−120.

4. Association of leptin, visfatin, apelin, resistin and adiponectin with clear cell renal cell carcinoma / H. P. Zhang et al. // Oncol. Lett. 2017. № 13. R. 463−468. doi:

5. Faktory riska i biomarkery diagnostiki vtorichnykh zabolevanii pochek detei / A. A. Volkova, E. V. Savel'eva, S. V. Barsukova, S. A. Drebneva // Ross. vestn. perinatologii i pediatrii. 2016. № 4 S. 208−210.

6. Adiponectin gene polymorphisms and obesity increase the susceptibility to arsenic−related renal cell carcinoma / Y. M. Hsueh et al. // Toxicol. Appl. Pharmacol. 2018. № 350. R. 11−20.

7. Antushevich H., Wojcik M. Apelin in disease // Clin. Chim. Acta. 2018. № 483. R. 241−248.

8. The impact of obesity and adiponectin signaling in patients with renal cell carcinoma A potential mechanism for the "obesity paradox". The impact of obesity and adiponectin signaling in patients with renal cell carcinoma / R. Ito et al. // Plos. One. 2017. № 12. e0171615. doi:

9. Miyamoto S., Sharma K. Adipokines protecting CKD // Nephrol. Dial Transplant. 2013. № 28, Suppl. 4. R. 15−22.

10. Leptin receptor gene (A/G) polymorphism rs1137101 and renal cell carcinoma / A. M. Abdu Allah et al. // Mol. Cell Biochem. 2018. № 448. R. 137−44. doi:−018−3320−1

11. Prognostic Value of Leptin Receptor Overexpression in Upper Tract Urothelial Carcinomas in Taiwan / Y. C. Lee et al. // Clin. Genitourin Cancer. 2017. № 15. e653−9. doi:

12. Prognostic biomarkers in renal cell carcinoma: is there a relationship with obesity / K. L. Ng et al. // Pathology. 2018. № 50. R. 504−510.

13. Serum visfatin concentration and endothelial dysfunction in chronic kidney / M. I. Yilmaz et al. // Nephrol. Dial Transplant. 2008. № 23. R. 959−965.

14. Association between serum visfatin and carotid atherosclerosis in diabetic and non−diabetic patients on maintenance hemodialysis / J. Mu et al. // J. Nephrology. 2011. № 24. R. 177−184.

15. Circulating levels of visfatin/pre−B−cell colony−enhancing factor 1 in relation to genotype GFR, body composition, and survival in patients with CKD / J. Axelsson et al. // Am. J. Kidney Dis. 2007. № 49. R. 237−244. doi:

16. Visfatin is increased in chronic kidney disease patients with poor appetite and correlates negatively with fasting serum amino acids and triglyceride levels / J. J. Carrero et al. // Nephrol. Dial. Transplant. 2010. № 25. R. 901−906. doi:

17. Association of plasma omentin−1 level with insulin resistance in chronic kidney disease patients / A. Qasema, S. Faragea, F. A. Elmesallamya, H. H. Elsaidb // Endocrinology. 2015. № 1. R. 72−76.

18. Serum omentin−1 levels in diabetic and nondiabetic patients with chronic kidney disease / H. Tekce et al. // Exp. Clin. Endocrinol. Diabetes. 2014. № 122. R. 451−456. doi:−0034−1375674

19. Soluble intracellular adhesion molecule−1 and omentin−1 as potential biomarkers of subclinical atherosclerosis in hemodialysis patients / M. Kocijancic, Z. Cubranic, B. Vujicic et al. // Int. Urol. Nephrol. 2016. № 48. R. 1145−1154. doi:−016−1275−2

20. Ohashi K. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin−knockout mice // Arterioscler. Thromb. Vasc. Biol. 2007. № 27. R. 1910−−1917. doi: 1/ATVBAHA.107.147645

21. Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to shortterm mortality / P. A. McCullough et al. // Am. Heart J. 2008. Vol. 156. P. 277−283. doi:

22. Sharma K. The link between obesity and albuminuria: Adiponection and padocyte dysfunction // Kidney Int. 2009. Vol. 76. P. 145−148. doi:

23. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow−up predict risk of the metabolic syndrome / S. Lindberg et al. // Diabetes Metab. 2017. Vol. 43. P. 134−139. doi:

24. Rannyaya diagnostika porazheniya pochek u detei s sakharnym diabetom 1 tipa / A. A. Vyalkova, E. V. Savel'eva, E. P. Kulashna, M. A. Belova // Pediatr. 2016. № 2. S. 181−182.

Go on Top