Previous Next

CURRENT ISSUE

№2' 2020

PULMONOLOGY

International Medical Journal, Vol. 26., Iss. 2, 2020, P. 16−20.


DOI (https://doi.org/10.37436/2308-5274-2020-2-3)

MECHANISMS AND FEATURES OF IMMUNE STATUS AND "OXIDATIVE STRESS - ANTIOXIDANT PROTECTION" SYSTEM IN PATIENTS WITH TUBERCULOSIS


Hrek I. I., Maryna Mykolayivna Kochuieva

Kharkiv Medical Academy of Postgraduate Education
V. N. Karazin Kharkiv National University, Ukraine

The study of the human immune system state in infection with M. tuberculosis is relevant because the course and outcome of this disease are largely determined by the immune status of the patient. However, 98 % of patients with pulmonary tuberculosis have an immune imbalance. It is known that in the protection against tuberculosis an important role belongs to the body's natural resistance, which is provided by a variety of cellular and humoral factors, physicochemical characteristics of tissues, lymphoid cells, leukocyte and macrophage responses and genetic resistance. When mycobacteria enter the body, polymorphonuclear leukocytes, monocytes and macrophages are the main phagocytic cells. Optimally high level of resistance to the pathogen develops only in the coordinated interaction of T−lymphocytes with macrophages. Studies of cellular immunity and genetic markers have shown that the course of tuberculosis infection is associated with suppression of their functional activity. Immune response deregulation is closely related to oxidative stress, which results from an imbalance between free reactive oxygen species and antioxidant mechanisms, with a higher risk of developing it rather in lungs than other organs. Many studies have presented the results of studying the state of the immune system and the "oxidative stress − antioxidant protection" system in tuberculosis. This is an important component, because the clinical course and outcome of treatment is largely determined by the status of these systems. A number of experts point out that the study of immunological and oxidative parameters in tuberculosis is of a great importance for deciding on the tactics of treatment and the choice of direction of influence on the course of the disease.

Key words: M. Tuberculosis, immunity in tuberculosis, oxidative stress, antioxidant protection.


REFERENCES


1. Motavkina N. S. Nekotorye osobennosti immunnogo statusa u raznykh kategorii ftiziatricheskikh bol'nykh: ucheb. posob. Vladivostok: Departament zdravookhraneniya administratsii Primorskogo kraya; GOU VPO "Vladivostokskii gos. med. un−t Federal'nogo agentstva po zdravookhraneniyu i sotsial'nomu razvitiyu", 2007. 36 s.

2. Delbridge L. M., O'Riordan M. X. Innate recognition of intracellular bacteria // Curr. Opin. Immunol. 2007. Vol. 19, № 1. P. 10−16.

3. Analysis of cellular phenotypes that mediate genetic resistance to tuberculosis using a radiation bone marrow chimera approach / K. B. Majorov et al. // Infect. Immunol. 2005. Vol. 73. P. 6174−6178. doi: https://doi.org/10.1128/iai.73.9.6174−6178.2005

4. Shvydchenko I. N., Nesterova I. V., Sinel'nikova E. Yu. Tsitokinsekretiruyushchaya funktsiya neitrofil'nykh granulotsitov // Immunologiya. 2005. № 1. S. 31−34.

5. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice / E. B. Eruslanov et al. // Infect. Immunol. 2005. Vol. 73. P. 1744−1753.

6. Houben E. N., Nguyen L., Pieters J. Interaction of pathogenic mycobacteria with the host immune system // Curr. Opin. Microbiol. 2006. Vol. 9, № l. P. 76−85.

7. Soderzhanie tsentral'nykh i effektornykh kletok pamyati i funktsional'nye svoistva T−limfotsitov novorozhdennykh i vzroslykh pri razlichnykh sposobakh aktivatsii "in vitro" / V. Yu. Talaev i dr. // Immunologiya. 2005. T. 26, № 5. S. 267−274.

8. Roit A., Brostoff D., Meil D. Immunologiya; per. s angl. M.: Mir, 2000. 592 s.

9. Flynn J. A.L., Chan J. Immunology of tuberculosis // Ann. Rev. Immunol. 2001. Vol. 19. P. 93−129.

10. Intracellular signaling cascades regulating innate immune responses to mycobacteria: branching out from Toll−like receptors / E. K. Jo et al. // Cell. Microbiol. 2007. Vol. 9, № 5. P. 1087−1098. doi: https://doi.org/10.1111/j.1462−5822.2007.00914.x

11. Toll−like receptor 9 contributes of Mycobacterium bovis Bacillus Galmette−Guerin by Flt3−ligand generated dendritic cells / F. Von Meyenn et al. // Immunobiology. 2006. Vol. 211, № 6−8. P. 557−565. doi: https://doi.org/10.1016/j.imbio.2006.05.004

12. Brown G. D. Lectin−1: a signalling non−TLR patternrecognition receptor // Nature Rev. Immunol. 2006. Vol. 6. P. 33−43.

13. Gerold G., Zychlinsky A. L., de Diego J. What role of Toll−like receptors in bacterial infection // Semin. Immunol. 2007. Vol. 19, № 1. P. 41−47. doi: https://doi.org/10.1016/j.smim.2006.12.003

14. Bacillus Calmette−Guerin−pulsed dendritic cells stimulate natural killer T cells and gammadelta T cells / M. Naoe et al. // Int. J. Urol. 2007. Vol. 14, № 6. P. 532−538. doi: https://doi.org/10.1111/j.1442−2042.2006.01697.x

15. Tyul'kova T. E. Kliniko−immunologicheskaya kharakteristika detei grupp riska po razvitiyu lokal'nogo tuberkuleza: avtoref. dis. kand. med. nauk. Tyumen', 2004. 22 s.

16. Control freaks: immune regulatory cells / C. NaglerAnderson et al. // Nature Immunol. 2004. Vol. 5, № 2. P. 119−122.

17. Mordovskaya L. I., Vladimirskii M. A., Aksenova V. A. Induktsiya interferona−gamma antitelami mikobakterii tuberkuleza v obraztsakh tsel'noi krovi pri tuberkuleze legkikh u podrostkov // Sovershenstvovanie meditsinskoi pomoshchi bol'nym tuberkulezom: materialy Vserossiiskoi nauch.−prakt. konf. SPb., 2011. S. 361−362.

18. Pichugin A. V., Apt A. S. Apoptoz kletok immunnoi sistemy pri tuberkuleznoi infektsii // Problemy tuberkuleza. 2005. № 12. S. 3−7.

19. Mayanskii A. N. Tuberkulez: mikrobiologicheskie i immunopatogeneticheskie aspekty // Immunologiya. 2001. № 2. S. 53−63.

20. Pokazateli spetsificheskoi reaktivnosti u bol'nykh s retsidivom tuberkuleza legkikh / I. L. Platonova i dr. // Tuberkulez i bolezni legkikh. 2011. № 5. S. 110−112.

21. Tsitokin−produtsiruyushchaya aktivnost' mononuklearnykh limfotsitov krovi pri tuberkuleze legkikh s mnozhestvennoi lekarstvennoi ustoichivost'yu / R. R. Khasanova i dr. // Tuberkulez i bolezni legkikh. 2011. № 5. S. 209−210.

22. Pokazateli immuniteta u detei, perenesshikh vnutrigrudnoi tuberkulez / V. F. Elufimova i dr. // Problemy tuberkuleza. 2000. № 2. S. 23−25.

23. Erokhin V. V., Zemskova Z. S. Sovremennye predstavleniya o tuberkuleznom vospalenii // Problemy tuberkuleza. 2003. № 3. S. 11−21.

24. Blum B. R. Tuberkulez. Patogenez, zashchita, kontrol'; per. s angl. M.: Meditsina, 2002. 696 s.

25. Neopterin and oxidative stress markers in the diagnosis of extrapulmonary tuberculosis / N. Goyal, B. Kashyap, N. Singh, I. R. Kaur // Biomarkers. 2017. Vol. 22, № 7. P. 648−653. doi: https://doi.org/10.1080/1354750x.2016.1265005

26. Nitric oxide in the pathogenesis and treatment of tuberculosis / H. Jamaati, E. Mortaz, Z. Pajouhi et al. // Frontiers in Microbiology. 2017. Vol. 8. P. 2008. doi: https://doi.org/10.3389/fmicb.2017.02008

27. Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages / J. Idh, B. Andersson, M. Lerm et al. // PLoS One. 2017. Vol. 12, № 7. Article e0181221. doi: https://doi.org/10.1371/journal.pone.0181221

28. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species / M. I. Voskuil, I. L. Bartek, K. Visconti, G. K. Schoolnik // Frontiers in Microbiology. 2011. Vol. 2. P. 105. doi: https://doi.org/10.3389/fmicb.2011.00105

29. Wu Y., Gulbins E., Grassmé H. Crosstalk between sphingomyelinases and reactive oxygen species in mycobacterial infection // Antioxidants & Redox Signaling. 2018. Vol. 28, № 10. P. 935−948. doi: https://doi.org/10.1089/ars.2017.7050

Go on Top