Previous Next

CURRENT ISSUE

№2' 2020

THERAPY

International Medical Journal, Vol. 26., Iss. 2, 2020, P. 5−10.


DOI (https://doi.org/10.37436/2308-5274-2020-2-1)

OBESITY: CLINICAL AND PATHOGENETIC JUSTIFICATION OF PREVENTION AND TREATMENT


Korzh O. M.

Kharkiv Medical Academy of Postgraduate Education, Ukraine

Obesity is one of the most common chronic diseases worldwide. Numerous studies in recent years have identified obesity as a key cause of type 2 diabetes, metabolic syndrome, and cardiovascular disease. Comprehensive medical and non−medical treatment of metabolic disorders, obesity and correction of excess body weight are the urgent tasks for both the patient and doctor. When defining the obesity as a chronic psychosomatic disease caused by the interaction of numerous genetic and environmental factors there is emphasized the complexity of the problem, including psychological, medical, social, physical and economic aspects. The widespread prevalence of obesity, which determines its comorbid nature, dictates the need to clarify the principles and options for treatment and prevention. In the process of active study, the multicomponent pathogenesis of obesity with the important role of different parts of the brain determines the relevance of a combination of pharmacotherapy and lifestyle intervention. In pharmacotherapy, the weight correction is an important component and reduces the risk of cardiovascular complications, improves quality of life and prognosis. The basis of weight correction measures is a change in lifestyle, increased physical activity and alteration in diet in order to achieve a balance between energy consumption and expenditure. Weight loss is accompanied with an increased tissue sensitivity to insulin, improved lipid metabolism, elimination of latent inflammation, lowering blood pressure and, accordingly, plays a critical role in prevention of the associated diseases and reducing the risk of complications. The fight against obesity is not only an improvement in the patient general condition, but also a great economic benefit, as the doses of drugs are reduced or the need for hypolipidemic, antidiabetic and antihypertensive drugs disappears.

Key words: obesity, metabolic syndrome, diabetes mellitus, cardiometabolic risk, microbiota, insulin resistance, treatment, prevention.


REFERENCES


1. Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians / V. Snow et al. // Ann. Intern. Med. 2005. № 142 (7). R. 525−531. doi: https://doi.org/10.7326/0003−4819−142−7−200504050−00011

2. Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary] / D. C. Lau et al. // CMAJ. 2007. № 176. S1−S13. doi: https://doi.org/10.1503/cmaj.061409

3. National, regional, and global trends in bodymass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country years and 9.1 million participants / M. Finucane et al. // Lancet. 2011. № 377. R. 557−567. doi: https://doi.org/10.1016/s0140−6736(10)62037−5

4. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. A Report of the American College of Cardiology / American Heart Association Task Force on Practice Guidelines and The Obesity Society // J. Am. Coll. Cardiol. 2014. № 63(25_PA). R. 2985−3023. doi: https://doi.org/10.1331/japha.2014.14502

5. ESC Guidelines on diabetes, pre−diabetes, and cardiovascular diseases developed in collaboration with the EASD. The Task Force on diabetes, pre−diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD) The European Society of Cardiology 2012 // Eur. Heart J. 2013. № 34. R. 3035−3087. doi: https://doi.org/10.1093/eurheartj/eht108

6. Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: daily life blood pressure, cardiac damage, and prognosis / G. Mancia et al. // Hypertension. 2007. Vol. 49. P. 40−47. doi: https://doi.org/10.1161/01.hyp.0000251933.22091.24

7. Obesity: risk factor or primary disease? / C. Aguilera et al. // Rev. Med. Chil. 2019. Vol. 147 (4). P. 470−474. doi: 10.4067/S0034−98872019000400470

8. Misra A., Jayawardena R., Anoop S. Obesity in South Asia: Phenotype, Morbidities, and Mitigation // Curr. Obes. Rep. 2019. Vol. 8 (1). P. 43−52. doi: https://doi.org/10.1007/s13679−019−0328−0

9. Bodhini D., Mohan V. Mediators of insulin resistance & cardiometabolic risk: Newer insights // Indian J. Med. Res. 2018. Vol. 148 (2). P. 127−129. doi: https://doi.org/10.4103/ijmr.ijmr_969_18

10. Obesity Pathogenesis: An Endocrine Society Scientific Statement / M. W. Schwartz et al. // Endocr. Rev. 2017. Vol. 38 (4). P. 267−296. doi: 10.1210/er.2017−00111

11. McIntyre A. Burden of illness review of obesity: are the true costs realised? // RSPH. 1998. Vol. 118 (2). P. 76−84. doi: https://doi.org/10.1177/146642409811800207

12. Treating obesity seriously: when recommendations for lifestyle change confront biological adaptations / C. N. Ochner, A. G. Tsai, R. F. Kushner, T. A. Wadden // Lancet. Diabetes Endocrinol. 2015. Vol. 3 (4). P. 232−234. doi: https://doi.org/10.1016/s2213−8587(15)00009−1

13. Sinclair P., Docherty N., le Roux C. W. Metabolic Effects of Bariatric Surgery // Clin. Chem. 2018. Vol. 64 (1). P. 72−81. doi: https://doi.org/10.1373/clinchem.2017.272336

14. Nainggolan L. Obesity as a "Brain Disease"; a Driver for New Therapies. 22nd European Congress on Obesity. 2015. URL: https://www.med− scape.com/viewarticle/844410.

15. Effect of Metformin on Antipsychotic−Induced Metabolic Dysfunction: The Potential Role of Gut−Brain Axis / C. Luo et al. // Front Pharmacol. 2019. Vol. 10. P. 371. doi: https://doi.org/10.3389/fphar.2019.00371

16. Bauer P. V., Hamr S. C., Duca F. A. Regulation of energy balance by a gut−brain axis and involvement of the gut microbiota // Cell Mol. Life Sci. 2016. Vol. 73 (4). P. 737−755. doi: https://doi.org/10.1007/s00018−015−2083−z

17. Gut−microbiota−brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation / A. I. Petra et al. // Clin. Ther. 2015. Vol. 37 (5). P. 984−995. doi: https://doi.org/10.1016/j.clinthera.2015.04.002

18. Gut Microbiome: Profound Implications for Diet and Disease / R. D. Jr. Hills et al. // Nutrients. 2019. Vol. 11 (7). P. 1613. doi: 10.3390/nu11071613

19. The Prevalence of Metabolically Healthy and Unhealthy Obesity according to Different Criteria / C. Liu et al. // Obes. Facts. 2019. Vol. 12 (1). P. 78−90. doi: https://doi.org/10.1159/000495852

20. Smith G. I., Mittendorfer B., Klein S. Metabolically healthy obesity: facts and fantasies // J. Clin. Invest. 2019. Vol. 129 (10). P. 3978−3989. doi: https://doi.org/10.1172/jci129186

21. Adipose Tissue Dysfunction as Determinant of Obesity−Associated Metabolic Complications / M. Longo et al. // Int. J. Mol. Sci. 2019. Vol. 20 (9). P. 2358. doi: 10.3390/ijms20092358

22. Brons C., Grunnet L. G. Mechanisms in endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? // Eur. J. Endocrinol. 2017. Vol. 176 (2). R67−R78. doi: https://doi.org/10.1530/eje−16−0488

23. Hwang I., Kim J. B. Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors // Diabetes Metab. J. 2019. Vol. 43 (6). P. 752−762. doi: https://doi.org/10.4093/dmj.2019.0174

24. Ye J., Kraegen T. Insulin resistance: central and peripheral mechanisms. The 2007 Stock Conference Report // Obes. Rev. 2008. Vol. 9 (1). P. 30−34. doi: https://doi.org/10.1111/j.1467−789x.2007.00402.x

25. Gummesson A., Nyman E., Knutsson M., Karpefors M. Effect of weight reduction on glycated haemoglobin in weight loss trials in patients with type 2 diabetes // Diabetes Obes. Metab. 2017. Vol. 19 (9). P. 1295−1305. doi: https://doi.org/10.1111/dom.12971

26. American Diabetes Association. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes−2018 // Diabetes Care. 2018. Vol. 41 (Suppl. 1). S51−S54. doi: https://doi.org/10.2337/dc18−s005

27. Cook R. N., Appel L. J., Whelton P. K. Weight change and mortality: Long−term results from the trials of hypertension prevention // J. Clin. Hypertens. 2018. Vol. 20 (12). P. 1666−1673. doi: https://doi.org/10.1111/jch.13418

28. Wang B., Cheng K. K. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance // Int. J. Mol. Sci. 2018. Vol. 19 (11). P. 3552. doi: https://doi.org/10.3390/ijms19113552

29. Metformin Inhibits Advanced Glycation End Products−Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFkappaB Pathway Suppression / Z. Zhou et al. // J. Diabetes Res. 2016. Vol. 4847812. doi: https://doi.org/10.1155/2016/4847812

30. Rodriguez J., Hiel S., Delzenne N. M. Metformin: old friend, new ways of action−implication of the gut microbiome? // Curr. Opin. Clin. Nutr. Metab. Care. 2018. Vol. 21 (4). P. 294−301. doi: https://doi.org/10.1097/mco.0000000000000468

31. Anti−inflammatory Effects of Metformin on Neuroinflammation and NLRP3 Inflammasome Activation in BV−2 Microglial Cells / J.−S. Ha et al. // Biomed. Sci. Lett. 2019. Vol. 25 (1). P. 92−98. doi: https://doi.org/10.15616/bsl.2019.25.1.92

32. Araújo J. R., Martel F. Sibutramine effects on central mechanisms regulating energy homeostasis // Curr. Neuropharmacol. 2012. Vol. 10 (1). P. 49−52. doi: https://doi.org/10.2174/157015912799362788

33. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity / A. Gokcel et al. // Diabetes Obes. Metab. 2002. Vol. 4 (1). P. 49−55. doi: https://doi.org/10.1046/j.1463−1326.2002.00181.x

34. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity / K. Y. Chen et al. // J. Biol. Chem. 2020. Vol. 295 (7). P. 1926−1942. doi: 10.1074/jbc. REV119.007363

35. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis / J. M. McGlashon et al. // Cell. Metab. 2015. Vol. 21 (5). P. 692−705. doi: https://doi.org/10.1016/j.cmet.2015.04.008

Go on Top